ELECTROSEAL CONDUCTIVE ELASTOMER CASE STUDY

TABLE 1

Elastomer Type	Low Temperature	Upper Temperature	
EPDM	-58°F (-50°C)	257°F (125°C)	
Silicone	-49°F (-45°C)	392°F (200°C)	
Fluorosilicone	-67°F (-55°C)	347°F (175°C)	

TABLE 4

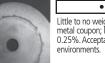

Material Thickness	Compression Force PSI (MPA) at Deflection of:				
	5%	*10%	15%	20%	
0.045 (1,1)	40 (0,3)	100 (0,7)	155 (1,1)	280 (1,9)	
0.062 (1,6)	85 (0,6)	165 (1,1)	240 (1,7)	345 (2,4)	
0.125 (3,2)	115 (0,8)	180 (1,2)	245 (1,7)	290 (2,0)	

TABLE 2

Fluid	Silicone	Fluorosilicone	EPDM	
Impermeability to Gases	Poor	Fair	Good	
Ozone and Ultraviolet	Excellent	Excellent	Excellent	
ASTM 1 Oil	Fair	Good	Don't Use	
Hydraulic Fluids (Organic)	Fair	Good	Don't Use	
Hydraulic Fluids (Phosphate ester)	Fair	Fair	Excellent	
Hydrocarbon Fuels	Don't Use	Good	Don't Use	
Dilute Acids	Fair	Good	Good	
Concentrated Acids	Don't Use	Don't Use	Fair / Good	
Dilute Bases	Fair	Good	Excellent	
Concentrated Bases	Don't Use	Don't Use	Good	
Esters / Ketones	Don't Use	Don't Use	Excellent	
DS-2 (Decontaminating Fluid)	Poor	Poor	Good	
STB (Decontaminating Fluid)	Good	Good	Good	
Low Temperature	Excellent	Excellent	Excellent	
High Temperature	Excellent	Good	Good	
Compression Set	Good	Good	Good	
Radiation Resistance	Good	Poor	Good	

TABLE 5

Cross Section Shape	Deflection
Flat Strip	5-10 Percent
Solid O	20-25 Percent
Solid D	15-20 Percent
Hollow O	20-50 Percent
Hollow D	25-50 Percent
Hollow P	25-50 Percent
Interference Fit	15-25 Percent

Little to no weight loss on metal coupon; less than 0.25%. Acceptable in all

Substantial amount of Substantial amount of weight loss on metal coupon; between 0.50% and 1.25%. Not acceptable in corrosive environments; for less corro-sive applications consult with Laird applications engineer.

•

Extreme amount of weight loss on metal coupon; greater than 1.25%. Not recommended in any environments.

TABLE 3

Metal Substrate	80 Sil AG/CU	81 Sil AG/AL	84 Sil AG/NI	85 Sil AG/ Glass	89 FSil AG/AL	92 FSil NI/ Graphite	93 Sil NI/ Graphite	96 EPDM AG/AL
Chromated AI	•	•	•	•	•	•	•	•
Galvalume [®]	•	•	•	•	•	•	•	•
Tin Plated Steel	•	•	•	•	•	•	•	•
Zinc Plated Steel	•	•	•	•	•	•	•	•
Stainless Steel	•	•	•	•	•	•	•	•

ELECTROSEAL CONDUCTIVE ELASTOMER MATERIAL

ELECTROSEAL[™] CONDUCTIVE ELASTOMER EMI SHIELDING

Laird electrically conductive elastomer products are ideal for both military and commercial applications requiring both environmental sealing and EMI shielding. Compounds can be supplied in molded or extruded shapes, sheet stock, custom extruded, or die-cut shapes to meet a wide variety of applications.

Our conductive extrusions offer a wide choice of profiles to fit a large range of applications. The cross-sections shown on the following pages are offered as standard. Custom dies can be built to accommodate your specific design.

- Available in a wide variety of conductive filler materials
- Shielding effectiveness up to 120 dB at 10 GHz

SHEET MATERIAL

The Table below lists thicknesses and sizes for our molded sheet material, while Table 3, page 82, shows the compounds available for all of our conductive silicone elastomers.

HOW TO SPECIFY ECE

Decide on molded sheet stock or extruded shapes. Select the desired configuration and dimensions from Table 1 (for sheet stock) or page 85 (for extruded shapes). Select the desired material from Table 3. Insert material number from Table 3, page 82, in place of the letters XX in the Laird part number.

Example

- 1. From page 87, for a rectangular strip measuring 0.500 in. (12,7 mm) x 0.075 in. (1,9 mm), part number is 8861-0130-XX.
- 2. From Table 3, on page 82, for silver-nickel filler, material number is 84.
- 3. Ordering part number is 8861-0130-84.*

Note: Rectangular and D-shaped extrusions can be supplied with pressure sensitive adhesive tape.

*If pressure sensitive adhesive is required, replace the fifth digit with a 9 (i.e. 8861-9130-84).

THICKNESS/TOLERANCE	10 X 10 SHEET	10 X 15 SHEET	15 X 20 SHEET	18 X 18 SHEET
$0.020 \pm 0.004 \; (0,5 \pm 0,1)$	8860-0020-100-XX	8860-0020-150-XX	8860-0020-300-XX	N/A
0.032 ± 0.005 (0,8 ± 0,1)	8860-0032-100-XX	8860-0032-150-XX	8860-0032-300-XX	8860-0032-324-XX
0.045 ± 0.005 (1,1 ± 0,1)	8860-0045-100-XX	8860-0045-150-XX	8860-0045-300-XX	8860-0045-324-XX
0.062 ± 0.007 (1,5 ± 0,2)	8860-0062-100-XX	8860-0062-150-XX	8860-0062-300-XX	8860-0062-324-XX
0.093 ± 0.010 (2,3 ± 0,3)	8860-0093-100-XX	8860-0093-150-XX	8860-0093-300-XX	8860-0093-324-XX
0.100 ± 0.010 (2,5 ± 0,3)	8860-0100-100-XX	8860-0100-150-XX	8860-0100-300-XX	8860-0100-324-XX
0.125 ± 0.010 (3,2 ± 0,3)	8860-0125-100-XX	8860-0125-150-XX	8860-0125-300-XX	8860-0125-324-XX